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Abstract

The gradual ferromagnetic spin reorientation in hexagonal close packed Cobalt (hcp-Co) phase

between 230◦C and 330◦C reported for a Co single crystal in [Solid State Comm. 1, 81(1963)]

suggests that this phase could not have a hexagonal symmetry. This hypothesis is verified positively

by synchrotron radiation diffraction and neutron diffraction on polycrystalline powder cobalt. The

analysis of diffraction data has been done by using a specific set of Bragg peaks which are not

sensitive to the stacking faults present in abundance in hcp-Co. The crystal structure of the hcp-

type ordered areas of cobalt is described by the monoclinic symmetry with the magnetic space

group C2′/m′. In this monoclinic crystal structure the former hexagonal [001] axis is no longer

perpendicular to the hexagonal layers. The hexagonal [001] and [010] axes make an angle equal

α ≈ 90.10(1)◦, while the angle between in-plane [100] and [010] axes equals γ ≈ 120.11(1)◦. The

monoclinic symmetry provides an approximate description of the crystal structure of

the stacking faulted hcp-Co areas coexisting with fcc-Co areas.

Keywords: Cobalt, crystal structure, symmetry, neutron diffraction, synchrotron radiation diffraction

I. INTRODUCTION

Cobalt is an extensively studied material with a layered-type structure which can crystal-

lize in two different orderings: the hexagonal-close-packed (hcp-Co) and the face centered-

cubic (fcc-Co) [1]. The microstructure of the hcp and fcc phases of cobalt and similar layered

materials was studied in the past decades by X-ray diffraction [2–6], neutron diffraction [7–9]

and electron microscopy [10–13]. Electron microscopy studies show the presence of partial

dislocations which sometimes delimit domains of hcp-Co embedded in the fcc-Co matrix or

vice versa, domains of fcc-Co embedded in a hcp-Co matrix [14, 15]. The hcp-Co phase

is associated with numerous stacking faults while the fcc-Co phase has considerably less

stacking faults, as shown e.g. in [2–9, 16]. Two domains of hcp-Co stacked one above the

other with a stacking fault in between are usually delimited by a small interface region of a

few fcc-Co layers as shown e.g. in [2, 11, 12]. The average hcp domain consists of 30

to 40 hexagonal layers before the next stacking fault occurs [6, 8]. The crystal
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structure of fcc-Co has to be considered while analyzing the crystal structure of

hcp-Co phase, because they are often clustered together in the same grains of

cobalt.

The ferromagnetic spin reorientation process motivates the revisit of the symmetry and

the crystal structure of hcp-Co. Single crystal magnetization [17], single crystal neutron

diffraction [18, 19] and elastic properties measurements [20, 21] show that between 230◦C

and 330◦C the ferromagnetically aligned Co magnetic moments in hcp-Co single crystals

gradually rotate from a direction parallel to [001] towards a direction perpendicular to [001].

Above 330◦C the magnetic moments remain perpendicular to [001] up to about 400◦C when

the hcp-Co transforms to the fcc-Co [22]. In this paper the crystallographic planes and

directions refer to the hexagonal system. When other systems are used it is given explicitly.

The crystal structure of the hcp-Co areas is assigned to the hexagonal space group

P63/mmc (no. 194). The ferromagnetic mode 00F with magnetic moments parallel to

the hexagonal [001] axis (below 230◦C) is compatible with the hexagonal symmetry as dis-

cussed in [23]. The magnetic space group P63/mm′c′ [24, 25] is compatible with the mode

00F [23]. Ferromagnetic orderings with moments perpendicular to [001] are not compatible

with any magnetic space group derived from P63/mmc [24]. The gradual magnetic moment

reorientation requires a ferromagnetic ordering of mode F0F which is compatible with mon-

oclinic symmetry [23]. The ferromagnetic ordering observed in hcp-Co above 230◦C can be

described by a monoclinic subgroup of P63/mm′c′. The hypothesis about the monoclinic

symmetry drawn from observations of the magnetic properties of hcp-Co single crystals are

studied in this paper with polycrystalline powder samples of cobalt. We use synchrotron

radiation (SR) powder diffraction and neutron powder diffraction with one Co sample which

is almost pure hcp-Co and another Co sample with about fcc:hcp molar ratio circa 18%:82%.

II. MATERIALS AND METHODS

In this study two commercial powder Co samples were used: the first labelled as HCP-Co

(provided by Acros, Lot A0414657) is almost hcp-pure and the second, labelled as MIX-Co

(provided by Alfa-Aesar, Lot 23997) is a mixture of phases with the molar ratio fcc:hcp

= 18%:82%. The HCP-Co sample was divided in parts for use in neutron diffraction and

synchrotron radiation (SR) diffraction measurements. Please note that we use the symbol

3



with capital letters HCP-Co for the sample label and the symbol with lowercase letters

hcp-Co for the hexagonal-close-packed phase of cobalt in general.

The first part of the HCP-Co sample was used for neutron powder diffraction measure-

ments at RT using the instrument D2B at the Institut Laue-Langevin in Grenoble, France.

The measurements were done at RT with long counting times to obtain high statistical

accuracy. The sample was placed in an 8-mm-diameter vanadium container, the neutron

wavelength was 1.5946 Å and the instrument was set in high intensity mode, i.e. using α1

and α2 fully open and α3 = 5′. The angular range was 10◦ < 2θ < 162.5◦ corresponding to

0.11 Å−1 < Q < 1.24 Å−1, where the scattering vector is defined as Q = 2 sin(θ)/λ.

The second part of the HCP-Co sample was used for neutron powder diffraction measure-

ments at the instrument SPODI [26] at the Maier-Leibniz Zentrum in Garching, Germany.

Measurements were performed with the HCP-Co sample placed in an 8-mm-diameter vana-

dium container at several temperature values between RT and 380◦C. The neutron wave-

length was 1.5468 Å, and the instrument was in high intensity mode collimation, i.e. using

α1 and α2 fully open and α3 = 10′. The angular range was 10◦ < 2θ < 157◦ corresponding

to 0.11 Å−1 < Q < 1.26 Å−1. The temperature control was obtained using an ILL-type

furnace.

SR diffraction measurements were done at the powder diffraction beamline BL04-

MSPD [27] of the ALBA synchrotron in Cerdanyola del Valles, Spain. The powder HCP-Co

and MIX-Co samples were sealed in 0.5 mm diameter borosilicate capillaries and trans-

mission geometry was used. The operating wavelength was refined using a NIST standard

silicon sample, NIST SI640D. Powder diffraction patterns were collected using the one-

dimensional silicon based position-sensitive detector MYTHEN [28]. This setup allows fast

data acquisition with better statistical accuracy as compared with the multi-analyser detec-

tor (MAD) setup [29] at the expense of angular resolution [30]. The instrumental resolution

was estimated by measuring the SR powder diffraction pattern of Na2Ca3Al2F14 (NAC)

reference standard [31].

The first session of measurements at MSPD beamline was done using a wavelength of

λ = 0.41301(4)Å at the angular range 2.4◦ < 2θ < 72◦ (corresponding to 0.10 Å−1 <

Q < 2.84 Å−1) with the HCP-Co and MIX-Co at RT. This wavelength gives access to a

large Q-range and gives an optimal sample absorption.

The second session of measurements at MSPD beamline was done using a wavelength of
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λ = 0.41357(6)Å at the angular range 2.4◦ < 2θ < 82◦ (corresponding to 0.1 Å−1 < Q < 3.17

Å−1). The MIX-Co sample was measured at temperatures 25, 100, 150, 200 and 250◦C.

Temperature control was obtained by using a cryostream 700+ series model from Oxford

Cryosytems flowing thermalized N2 gas on the sample in situ.

III. RESULTS

A. [CHANGED] Stacking of atomic layers in hcp-Co and fcc-Co areas, simplified

model vs more realistic model

The hcp and fcc structures of Cobalt are described as two different stacking arrangements

of the atomic hexagonal layers drawn in Fig. 1: hcp is equivalent to an ABABAB...type

stacking while fcc to an ABCABC...type stacking [2, 3]. The in-plane atomic coordinates

in hexagonal setting are: A(0, 0), B(1
3
, 2
3
) and C(2

3
, 1
3
).

FIG. 1. In-plane atomic positions in the hexagonal A (solid-line) B (dashed-line) and C (dotted-

line) layers (adapted from [2]). The hexagonal unit cell is depicted with solid lines.

In the simplified model the Cobalt crystallites can be described with set of

well arranged layers which fulfill the assumptions:

(i - simplified) The hexagonal layers have very few defects, i.e. the arrangement shown

in Fig. 1 extends over large in-plane distances and there are small in-pane

microstrains.
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(ii - simplified) The hcp-type ordering can exist for less than 20-30 layers [2, 6] and then a

change of the layers’ ordering (i.e. the stacking fault) must occur. The fcc-

type ordering can be observed, e.g. for a few hundreds of layers. In both

hcp and fcc areas the layers are well ordered at long in-plane distances.

(iii - simplified) The inter-layer d-spacing has the same value for any stacking sequence, i.e.

the same for hcp-type, fcc-type order as well as in the vicinity of stacking

faults.

This simplified model is often used by researchers for analyzing and simulating

hcp-Co diffraction patterns e.g. Frey et al. and S lawiński et al. [8, 16]

In a more realistic model of the crystal structure of cobalt it can be assumed

that the previous simplified assumptions should be changed to:

(i - realistic) The hexagonal layers have numerous in-plane defects as shown by electron

microscopy studies, e.g. [10–13]. It means that the arrangement shown in

Fig. 1 extends over distances much smaller than in the simplified model.

There may be also considerable in-plane microstrains which are larger than

in the simplified model.

(ii - realistic) The stacking faults in the hcp-type arrangement are expected as in the

simplified model, however please note the larger number of in-plane defects.

(iii - realistic) The inter-layer d-spacing for fcc-type order is larger by about 0.5% than

for hcp-type order, so one can expect some microstrain along the [001] axis

that is larger than in the simplified model.

B. Bragg peaks insensitive to stacking faults

In this simplified model of the crystal structure of Cobalt one can expect two types of

Bragg peaks: sensitive to stacking faults and not-sensitive to stacking faults. For the AB

layers’ sequence the Co atoms are located at A(0, 0, 1
4
) and B(1

3
, 2
3
, 3
4
) and their contribution

to the structure factor is proportional to 1 + exp(iϕ) where:

ϕ = 2π

{
h

3
+

2k

3
+

l

2

}
= 2π

{
h− k

3
+ k

}
+ πl. (1)
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For the AC layers’ sequence we have: A(0, 0, 1
4
) and C(2

3
, 1
3
, 3
4
) so we obtain:

ϕ = 2π

{
2h

3
+

k

3
+

l

2

}
= 2π

{
−h− k

3
+ h

}
+ πl. (2)

For the BC layers’ sequence we have: B(1
3
, 2
3
, 1
4
) and C(2

3
, 1
3
, 3
4
) so we obtain:

ϕ = 2π

{
h− k

3

}
+ πl. (3)

In all three cases the values of ϕ calculated in eqs. (1-3) are multiples of 2π if:

h− k = 3n1, (4a)

l = 2n2, (4b)

where n1 and n2 are both integers. With these conditions fulfilled for all possible sequences

(excluding the same layers as nearest neighbours) every layer contributes to the structure

factor with the same value: e2πiN = 1 (with N integer). The Bragg peaks with indices that

fulfill eqs. (4a-4b) will be named as stacking-faults-insensitive, or shortly as ’insensitive’

peaks - because their structure factor is not affected by the stacking faults, as mentioned

e.g. by Edwards and Lipson [2]. The Bragg peaks which do not fulfill eqs. (4a-4b) are

broadened and/or asymmetric due to stacking faults as explained in [2]. In this study we

will use the following ’insensitive’ peaks of the hcp-Co phase model (sorted with decreasing

d-spacing values): (002), (110), (112), (004), (114), (302), (006), (220).

C. [CHANGED] Some limitations of the stacking-faults-insensitive peaks ap-

proach

The conditions given in eqs. (1-4b) are too simplified for real cobalt samples.

The coexistence of intertwinned hcp-type and fcc-type domains with limited

in-plane size may lead to an increase of anisotropic microstrains and to the

broadening of the peaks labelled as ’insensitive’.

Another warning is related to the use of the terms hcp-Co phase and fcc-Co

phase. In polycrystalline cobalt samples the stacked layers arranged in hcp-type

and fcc-type order coexist in the same polycrystalline grains and the layers of

fcc-type can increase the microstrain of the neighbouring hcp-type layers (or vice

versa), see e.g. [9]. Therefore the term phase is not completely appropriate. The
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powder diffraction measurements provide an oversimplified approximate model

obtained by averaging over many intertwinned areas which contribute to Bragg

peaks usually attributed to the hcp and fcc phases.

D. Comparison of neutron and synchrotron radiation diffraction patterns of the

Cobalt samples

FIG. 2. Selected parts of neutron diffraction pattern of HCP-Co (a) and SR diffraction patterns

of HCP-Co (b) and MIX-Co (c) samples at RT. The peaks due to hcp and fcc phase models are

marked with ’H’ and ’C’ symbols, respectively. The stacking faults insensitive peak (002)

is marked with (*). The very weak C(200) peak is shown with an arrow in panel (b). The

scattering vector Q = 2 sin θ/λ, where 2θ is the scattering angle.

Representative parts of the neutron and SR powder diffraction patterns of the HCP-Co

and MIX-Co samples are shown in Fig. 2. The scattering vector Q is used as a common scale

for easier visualization. The intensity is given in arbitrary units in which the highest peak

has its maximum value 100. The diffraction patterns of the HCP-Co sample in Fig. 2a,b

8



show one symmetric and narrow ’insensitive’ H(002) peak and two peaks: H(100) and

H(101) affected by stacking faults, i.e. H(100) is asymmetric with a broad right side while

H(101) is symmetric and broad. There is also one narrow and symmetric peak of the fcc-Co

phase C(200). The HCP-Co sample has the fcc:hcp molar ratio 2.5%:97.5% and only few

separated weak fcc peaks can be observed, see e.g. the C(200) near Q=0.565 Å−1 marked

with the arrow in Fig. 2b. The sample HCP-Co can be considered as a collection of many

stacking faulted hcp-Co domains separated by a small amount of fcc-Co domains.

The relatively high and almost flat background in the neutron diffraction pattern of

HCP-Co (Fig. 2a) is due to the incoherent neutron scattering of the cobalt sample and

the vanadium container [34]. The difference of peak-to-background ratios between neutron

and SR diffraction patterns is due to the unfavourable ratio of the coherent and incoherent

scattering lengths of cobalt: b(coh) = 2.49 fm and b(inc) = -6.2 fm [34]. The hcp-Co areas

at RT have a ferromagnetic ordering with magnetic moments directed along [001], so the

H(002) Bragg peak has no magnetic neutron scattering contribution while both H(100) and

H(101) have some.

The SR diffraction pattern of MIX-Co samples shows the molar ratio fcc:hcp about

18%:82%, see Fig. 2c. Please note that the cubic C(111) and hexagonal H(002) peaks

are separated because the average ABCABC and ABABAB interlayer distances for fcc-Co

and hcp-Co differ by about 0.5%, see e.g. [35–37].

E. Analysis of shapes of stacking-faults’ sensitive Bragg peaks

The well established methodology of stacking faults models, see e.g. the book by Warren

[38], was applied to the SR diffraction patterns of MIX-Co and HCP-Co samples. In this

model two types of stacking faults are assumed: deformation faults with probability αST

and growth faults with probability βST . The deformation faults add two local fcc stacking

sequences e.g. ...ABABCACACA..., where the local fcc sequences are (ABC) and (BCA).

The growth faults add only one local fcc sequence e.g. ...ABABCBCBC.., i.e. (ABC) is the

only local fcc sequence. These two stacking fault types bring different contributions to the

X-ray diffraction pattern [38].

The calculations have been done with the programme FAULTS [39] assuming

the hexagonal and monoclinic symmetry of the hcp-type areas. The parameters
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of the monoclinic symmetry model are given in subsection 3G. We found a good

agreement for the sensitive peaks with both models and the same probabilities

αST = 0.0067 and βST = 0.03, i.e. similar values to those found for powder cobalt

samples in [6]. These probablilities correspond to an average column length

of the hcp-type area 1/(αST + βST ) ≈ 27 layers (thickness 55Å). The model shows

satisfactory agreement for the stacking faults sensitive peaks e.g. H(202), H(104), H(203),

see Fig 3. Both HCP-Co and MIX-Co samples with different fcc contents (2.5%

and 18%) and different microstrains show however similar shapes of the stacking

faults sensitive peaks, see Fig. 3. The same model of stacking faults, both in

hexagonal and monoclinic symmetry works well for both samples.

The main difference between the two patterns is due to the Bragg peaks of the fcc-Co

phases, see e.g. C(222), C(400) present in MIX-Co and almost absent in HCP-Co. The

model implemented in FAULTS assumes infinitely wide layers with ideal hexagonal planes

and the same d-spacing along [001] for both hcp-Co and fcc-Co phases.

F. Analysis of the shapes of stacking-faults’ insensitive Bragg peaks

We have analyzed the SR diffraction patterns of the cobalt samples limited to the hcp-Co

stacking faults insensitive peaks. The analysis was done in the following steps.

(i) The observed I(2θ) profiles of ’insensitive’ peaks due to the hcp-Co areas and the pro-

files of separated peaks due to the fcc-Co areas were fitted by the pseudo-Voigt func-

tion by using the programme WinPlotr [40]. These fits provide the raw values of the

integral breadths βRAW (2θhkl), i.e. not corrected for instrumental resolution. The cor-

rected integral breadths are calculated as β(2θ) = {βRAW (2θ)2 − βNAC(2θ)2} 1
2 , where

βNAC(2θ) is interpolated from integral breadths measured with the Na2Ca3Al2F14 ref-

erence standard [31] (see Fig. 4c).

(ii) The resolution corrected integral breadths β(2θhkl) of selected sets of ’insensitive’

peaks: [(002);(004);(006)] as well as [(110);(220)] has been analyzed by a Williamson-

Hall plot [41] providing information about the average coherent domain size and av-

erage microstrain in out-of-plane and in-plane directions.

10



FIG. 3. Selected parts of the SR powder diffraction patterns measured for the MIX-Co (solid line)

and HCP-Co (open circles) are shown in upper plots. The stacking faults insensitive (004)

peak is marked with (*), the remaining peals are stacking faults sensitive. The SR

powder diffraction pattern calculated for a hexagonal model of stacking faults with

the probabilities αST = 0.0067 and βST = 0.03 (see text) is shown in the lower plot

(solid line). The stacking faults sensitive peakshapes calculated with FAULTS using

the monoclinic model (not shown) are hard to distinguish from the hexagonal model

results. The upper plots were shifted vertically for visualisation.

(iii) The SR powder diffraction patterns limited to ’insensitive’ peaks only were analyzed by

the Rietveld method by using the programme Jana2006 [42] assuming both hexagonal

and monoclinic structure models.

The integral breadths of the ’insensitive’ peaks from hcp-Co and peaks from fcc-Co ob-

served with SR powder diffraction for MIX-Co sample are shown in Fig. 4a and for the

HCP-Co sample in Fig. 4b. It was possible to fit the profile of only 3 to 4 peaks due to the

fcc-Co phase, especially in the HCP-Co sample where the amount of fcc-Co is only 2.5% and

the fcc-Co peaks are broad. The panel Fig. 4c compares the integral breadths of ’insensitive’

peaks from hcp-Co observed for MIX-Co and HCP-Co, i.e. it shows the same data as in

panels Fig. 4a,b but without the fcc-Co peaks for easier visualisation. The peakwidths of

the reference sample for instrumental resolution Na2Ca3Al2F14 are shown in Fig. 4c. Each

panel in Fig 4a,b,c share the same horizontal 2θ scale but the vertical scales are different.
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FIG. 4. Integral breadths βRAW (in radians) of the hcp-Co insensitive peaks and fcc-Co peaks

observed in the SR diffraction patterns of MIX-Co (a) and HCP-Co (b). The hexagonal and

cubic indices are shown. In panel (c) only the hcp-Co insensitive peaks from MIX-Co and HCP-

Co samples are compared with the integral breadts of the Na2Ca3Al2F14 reference standard [31]

(estimation of the instrumental resolution). Panel (c) is shown to compare the peaks due to the

hcp-Co that were already shown in MIX-Co (a) and HCP-Co (b). The lines are shown to guide

the eye.

The data from panels (a) and (b) is repeated in panel (c) but in a different scale.

The relatively large differences of integral breadths of insensitive (00l) and

(hh0) peaks from HCP-Co sample agree with the monoclinic model calculations

with the programme FAULTS. The model calculations are compared with ex-

perimental data in Fig. 5.

The microstrains (ϵ) and coherent domain sizes (D) are calculated from the observed
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FIG. 5. Observed integral breadths βRAW (in radians) of the hcp-Co insensitive peaks

observed in HCP-Co (a) are compared with the results of model calculations with

both monoclinic and hexagonal symmetry (b) by the programme FAULTS (see text).

subset of peaks which show a linear dependence of their β(2θ) cos(θ) vs. sin θ. We use the

Williamson-Hall type linear fit [41]:

β(2θ) cos θ = 4ϵ sin θ +
Kλ

D
= A sin θ + B. (5)

so the microstrain and the coherent domain size are given by:

ϵ =
A

4
D =

Kλ

B
, (6)

where A and B are linear function parameters from Williamson Hall fit and K is the Scher-

rer’s constant set to K = 0.9 [43].

For the MIX-Co sample, shown in Fig. 4a with (fcc:hcp ratio 18:82%) the integral breadth

of the fcc-Co peaks and of hcp-Co insensitive peaks show a similar linear behaviour indicating

relatively low microstrains in areas with both hcp and fcc order. The Williamson Hall

plot gives the microstrain ϵMIX
hcp ≈ ϵMIX

fcc = 0.127(4)% and coherent domain size DMIX
hcp ≈

DMIX
fcc = 670(100)Å.This is much more than the average 55 Å of the hcp-type

areas estimated with the programme FAULTS in subsection 3E. This is due to
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FIG. 6. Williamson-Hall plots for (00l) and (hh0) peak families of the HCP-Co sample. Formulas

of linear functions obtained through least squares method for (00l) peaks and linear extrapolation

for (hh0) peaks are shown in the plot and are expressed in the unit of degrees.

stacking fault insensitive peaks being obtained by summing over multiple hcp-Co

and fcc-Co domains in each crystallite as explained in subection 3B.

The observed linear increase of integral breadths with small slope indicates that both hcp-

Co and fcc-Co areas are less strained in the MIX-Co sample than in the HCP-Co sample.

For the HCP-Co sample shown in Fig. 4b the situation is different. The integral breadths

of the fcc-Co peaks are large, as compatred with the fcc-Co peaks from MIX-Co sample,

and they show a steep increase vs 2θ indicating larger microstrains. A Williamson-Hall

fit for the fcc-Co peaks gives the microstrain ϵHCP
fcc = 0.73(4)% and coherent domain size

DHCP
fcc = 500(60)Å.

The peakwidths of insensitive peaks of the hcp-Co phase do not show a linear sin θ

behaviour, but there are considerable hkl-dependent differences. The (00l) group of peaks

are narrow indicating a low microstrain and large coherent diffracting domains along the

hexagonal direction [001]. The group of broader (hh0) peaks indicate larger microstrains

within the hexagonal layer (001) planes. The widths of the peaks indexed as (hh0) provide

the average over three equivalent directions in the (001) plane, i.e. ±(h, h, 0);±(2h, h̄, 0)

and ±(h, 2h̄, 0). The out-of-plane layers’ spacing is more regular than the in-plane atomic

arrangement inside the hexagonal layers.

In order to quantitatively describe the observed peak broadening of the ’insensitive’ peaks

from SR diffraction patterns we have performed a Williamson-Hall plot analysis [41] for the
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group of narrower (00l) peaks and the group of broader (hh0) peaks. The Williamson-

Hall plot for the HCP-Co sample is shown in Fig. 6. The slope of the obtained lines is

substantially larger for the (hh0) than for (00l) i.e. the in-plane microstrain is larger than

in the perpendicular [00l] direction. The y-intercept values for fitted lines are very close to

zero corresponding to large coherent domain sizes in both directions.

Eqs. (6) were used for a fit for the three points of the (00l) family and for a solution of

the set of two linear equations for the two points (110) and (220). In both cases one obtains

values of Ahkl and Bhkl with their uncertainties. The final values are ϵ00l = 0.171(5)%,

ϵhh0 = 0.305(7)%, D00l = 3900(1000)Å and Dhh0 = 6600(2000)Å for HCP-Co. The estimated

crystallite sizes have large uncertainties but the difference of microstrains ϵ00l and ϵhh0 is

significant.

G. Temperature dependence of the hcp-Co and fcc-Co lattice parameters

The SR powder diffraction patterns of HCP-Co and MIX-Co samples at RT and the

MIX-Co sample measured at temperatures between RT and 250◦C have been analyzed us-

ing Rietveld refinement [32, 33] by using the programme Jana2006 [42]. For the hcp-Co

phase only the ’insensitive’ Bragg peaks were used in the refinement. The hcp-Co phase

(hexagonal space group P63/mmc and Co atoms at position (2c)) and the fcc-Co phase (cu-

bic space group Fm3̄m and Co atoms at position (4a)) were assumed in the refinements. The

refinement was satisfactory and the resulting hexagonal ah,ch and cubic ac lattice parameters

are presented in Table I. The interlayer d-spacing equals dhcp = ch/2 and dfcc = ac/
√

3 in

hcp-Co and fcc-Co, respectively. The relative difference of interlayer’ spacing:

(∆d

d

)
⊥

=
dfcc − dhcp

dfcc
=

2ac√
3ch

− 1, (7)

where ⊥ indicates perpendicular to the layers, was reported in early works on cobalt to

be equal 0.57% [36], 0.55% [35] and 0.48% [37] at RT, i.e. not far from our values, i.e.

0.488(5)% for MIX-Co and 0.614(5)% for HCP-Co, see Table I. The values of (∆d/d)⊥

decrease with temperature as shown in Table I. The nearest neighbour in-plane distance is

equal lhcp = ah and lfcc = ac/
√

2 in hcp-Co and fcc-Co, respectively. The relative difference

of nearest neighbour in-plane distances is calculated as:
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(∆d

d

)
∥

=
lfcc − lhcp

lfcc
= 1 −

√
2
ah
ac

, (8)

where ∥ indicates parallel to the layers’ surface, is also shown in Table I.

TABLE I. Values of lattice constants of the hcp-Co and fcc-Co phases determined from SR powder

diffraction measurements on the HCP-Co and MIX-Co samples at different temperatures. The

relative differences of out-of-plane (eq. 7) and in-plane distances (eq. 8) is also shown.

Sample Temp. ah ch ch/ah ac (∆d/d)⊥ (∆d/d)∥

[◦C] [Å] [Å] [Å] [%] [%]

HCP-Co 25 2.50760(6) 4.07350(16) 1.62446(7) 3.5494(12) 0.614(5) -0.088(4)

MIX-Co 25 2.50811(6) 4.07432(16) 1.62446(7) 3.54568(12) 0.488(5) -0.037(4)

MIX-Co 100 2.51099(5) 4.08039(13) 1.62501(6) 3.54989(11) 0.458(4) -0.034(4)

MIX-Co 150 2.51269(5) 4.08406(14) 1.62537(6) 3.55235(12) 0.437(5) -0.032(4)

MIX-Co 200 2.51445(5) 4.08783(13) 1.62574(6) 3.55491(12) 0.416(5) -0.030(4)

MIX-Co 250 2.51632(5) 4.09181(14) 1.62611(6) 3.55765(13) 0.396(5) -0.027(4)

The lattice constants observed for both hcp and fcc areas in the HCP-Co and MIX-Co

samples differ. Please note that the fcc-Co (occupying only 2.5% in the HCP-Co sample)

is highly strained, as shown by broad peaks in Fig. 4b and the interlayer misfit (∆d/d)⊥ is

larger than in the MIX-Co sample (where the fcc-Co occupies 18%).

The temperature dependence of both hexagonal ah(T ), ch(T ) and cubic ac(T ) lattice

parameters is linear as shown e.g. in [1, 37] and their relative differences, e.g. (∆d/d)⊥

and (∆d/d)∥ tend linearly towards zero with temperature (see Table I, plot not shown),

i.e. at higher temperatures the misfits try to relax. The relative difference of interlayer

distances in hcp-to-fcc cobalt (∆d/d)⊥ was reported earlier, e.g. [35–37] while the much

smaller (∆d/d)∥ intralayer distance difference values were not reported so far for cobalt, to

our best knowledge.

H. The monoclinic and hexagonal models of the crystal structure of hcp-Co

The hkl-selective peak broadening of ’insensitive’ peaks shown in Fig. 4 can be explained

by a monoclinic deformation of the crystal lattice. This is consistent with the magnetic spin
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reorientation effect reported in hcp-Co single crystal [18, 19]. We tried to verify this hypoth-

esis by performing Rietveld analysis of the SR diffraction patterns by using the programme

Jana2006 [42] with only ’insensitive’ peaks included. The H(002) and C(111) peaks were

excluded from the refinements due to overlap.

The usual hexagonal close-packed structure (space group P63/mmc) will be denoted as

’undistorted’ and the monoclinic (space group C2/m) as ’distorted’. The lattice parameters

and unit cell vectors of undistorted and distorted hcp-Co will be denoted with superscripts

0 and 1, respectively.

The hcp-Co structure can be described in the hexagonal space group P63/mmc with the

generators in Seitz notation: {3+
001|000}, {2001|001

2
}, {2110|000}, {1̄|000}. If we remove the

two rotations around [001]: {3+
001|000} and {2001|001

2
} we obtain the set of generators of the

monoclinic space group C2/m. The group-subgroup relation between P63/mmc and C2/m

gives the following relations between the hexagonal unit cell vectors: a0
h, b0

h and c0
h and the

monoclinic unit cell vectors a0
m, b0

m and c0
m:

a0
m = b0

h − a0
h, (9a)

b0
m = b0

h + a0
h, (9b)

c0
m = c0

h, (9c)

where the subscripts ’h’ and ’m’ refer to the hexagonal and monoclinic settings, respectively.

The Co atoms are located at the sites (2c) [point group 6̄m2] of the space group P63/mmc:

at (1
3
, 2
3
, 1
4
) and (2

3
, 1
3
, 3
4
). In the monoclinic symmetry the Co atoms are at the site (4i) [point

group m] of the C2/m space group. This site has two free positional parameters x, z and the

atoms are located at: (x, 0, z), (x̄, 0, z̄), (1
2

+ x, 1
2
, z), (1

2
− x, 1

2
, z̄). In all Rietveld refinements

these parameters were fixed at x = 2/3 and z = 1/4 to match exactly the coordinates of the

hexagonal structure. Please note that the ’insensitive’ peaks cannot be used to determine x

and z, see eqs.(4a-4b).

In order to compare easier the undistorted hexagonal structure and the distorted mon-

oclinic structure we will use the pseudohexagonal setting of the monoclinic structure. The

pseudohexagonal vectors a1
h, b1

h and c1
h can be obtained by taking reverse transformation of
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eqs. (9a-9c) and changing all the superscripts from 0 to 1:

a1
h =

1

2
(b1

m − a1
m), (10a)

b1
h =

1

2
(b1

m + a1
m), (10b)

c1
h = c1

m. (10c)

The pseudohexagonal lattice parameters fulfill the following equations:

a1h = b1h, (11a)

α1
h + β1

h = 180◦, (11b)

which can be derived by calculating scalar products a1
ha

1
h, b1

hb
1
h as well as a1

hc
1
h and b1

hc
1
h

using eqs. (10a-10c). Please note that the pseudohexagonal setting is a primitive cell choice

for base-centered monoclinic structures. The relations between lattice constants in mono-

clinic and pseudohexagonal settings of the distorted structure, derived from eqs. (10a-10c)

are given by:

a1h = b1h =
1

2

√
(a1m)2 + (b1m)2, (12a)

c1h = c1m, (12b)

cosα1
h = cos(π − β1

h) =
a1m cos β1

m√
(a1m)2 + (b1m)2

, (12c)

cos γ1
h =

(b1m)2 − (a1m)2

(b1m)2 + (a1m)2
. (12d)

The mutual arrangement of the hexagonal, pseudohexagonal and monoclinic axes is shown

in Fig. 7. The distortions from hexagonal symmetry of the hcp-Co areas are expected to be

small because the variation of the peakwidths shown in Fig. 4 are also relatively small. It

can be assumed that with three small distortion parameters which fulfill:
δα

α
≪ 1,

δγ

γ
≪ 1

and
δa

a
≪ 1, we get:

a1h = b1h = a0h + δa, (13a)

c1h =
c0h

sin(90◦ + δα)
= c0h + O(δα2) ≈ c0h, (13b)

α1
h = 90◦ + δα, (13c)

β1
h = 90◦ − δα, (13d)

γ1
h = 120◦ + δγ. (13e)
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FIG. 7. The hexagonal (a0h, b0
h, c0h) pseudohexagonal (a1h, b1

h, c1h) and monoclinic (a1m, b1
m,

c1m) axes shown in two projections (a) perpendicular to the hexagonal c∗h reciprocal lattice vector

and (b) perpendicular to the monoclinic b∗
m reciprocal lattice vector. The z=1/4, 3/4... are the

coordinates of atomic planes and they are the same in all three settings. Solid lines mark the

base of the hexagonal unit cell and hexagonal axes, dashed lines are used for the pseudohexagonal

vectors and the dashed-dotted lines denote the monoclinic axes. The δγ/2 and δβm angles were

significantly enlarged for visualization. The distance between adjacent planes is denoted as d002 in

(b) with the same 002 indices in all three settings.

The pseudo-hexagonal angle α1
h between c1

h and b1
h is equal to (90◦ + δα) and it means

that δα is a measure of the inclination of the former hexagonal [001] axis with respect to

the lines of atoms arranged along b1
h in the former hexagonal layer. On the other hand the

pseudo-hexagonal angle γ1
h = 120◦ + δγ describes a deformation of the atomic layer itself.

I. Rietveld refinements of SR diffraction patterns of hcp-Co assuming the mono-

clinic symmetry

In the first step of Rietveld refinements, the undistorted hexagonal crystal structure de-

scribed by the space group P63/mmc was used, giving a relatively good refinement quality

parameter wRp, see Table II (col. no. 1). In the next steps, the monoclinic crystal struc-

ture with the monoclinic symmetry (space group C2/m) was used. For better visibility

of data presentation we have used the pseudo-hexagonal setting defined by eqs. (10a-12d).
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The model assuming a deformed (NON-hexagonal) layers which are perpendicular to the

hexagonal [001] axis, i.e. α = β = 90◦ and γ = 120◦ + δγ is shown in col. no. 2 of Table II.

The model assuming hexagonal layers which are NOT perpendicular to the hexagonal [001]

axis, i.e. α = 90◦ + δα, β = 90◦ − δα, and γ = 120◦ is shown in col. no. 2 of Table II. Both

these models give better agreement than the hexagonal one. The best agreement is obtained

for the model of NON-hexagonal layers which are NOT perpendicular to the hexagonal axis,

i.e. δα ̸= 0 and δγ ̸= 0, as shown in cols. no. 4 and 5 of Table II. These two cols. refer

to the same model given in pseudo-hexagonal and monoclinic settings, respectively. For

better visualisation the wRp minimum as a function of the angular deviations δα and δγ is

shown with the color map in Fig. 8. The color map shows the results of 100 refiements with

fixed values of δα and δγ. The refined angular distortion parameters δα = 0.111(3)◦ and

δγ = 0.104(4)◦ are larger than their statistical errors and this result supports the hypothesis

of a monoclinic distortion of the averaged crystal structure of the hcp-Co areas.

FIG. 8. (Left panel) Values of the fit quality indicator, wRp vs. angular deviations δα and δγ.

(Right panel). Plot of the 1-dimensional cuts with the value of wRp along the lines: δα = 0(△);

δγ = 0(2); δα = δγ(•). The angle deviation is δγ for (△), δα for (2) and δα = δγ for (•).
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TABLE II. Lattice constants and angles refined from the SR powder diffraction pattern of the

HCP-Co sample using only ’insensitive’ peaks (see text) using Rietveld method with use of the

hexagonal (col. 1) and monoclinic (cols. 2-5) models. In the hexagonal model Co atoms are at

positions (2c) of P63/mmc while in monoclinic model in positions (4i) of C2/m (for details see

Sect. III H). The refinement quality indicators wRp are given in the bottom row of the table. The

results of refinements for the best monoclinic model with both δα ̸= 0 and δγ ̸= 0 (see text) are

shown in both pseudohexagonal (col. 4) and monoclinic (col. 5) settings.

No. 1 2 3 4 5

Model
Hex

P63/mmc

Ps-hex

α−fix

γ−free

Ps-hex

α−free

γ−fix

Ps-hex

α−free

γ−free

Mono

C2/m

a [Å] 2.50807(10) 2.50946(11) 2.50828(10) 2.50973(10) 4.34924(22)

b [Å] = a = a = a = a 2.50578(11)

c [Å] 4.07431(17) 4.07416(16) 4.07455(16) 4.07474(15) 4.07474(15)

α [◦] 90 90 90.1247(33) 90.1115(29) 90

β [◦] 90 90 89.8753(33) 89.8884(29) 90.1287(32)

γ [◦] 120 120.1090(33) 120 120.1036(32) 90

wRp[%] 10.71 10.02 9.82 9.11 9.11

J. Neutron diffraction studies of the spin reorientation in the hcp areas of Cobalt

The monoclinic symmetry proposed above is compatible with the magnetic phenomena:

the ferromagnetic ordering of hcp-Co can be described by the magnetic space group C2′/m′.

This space group allows a continuous ferromagnetic spin reorientation, as discussed e.g.

in [44]. The Co atoms are allowed to have a ferromagnetically ordered magnetic moments:

M = [M0
x , 0,M

0
z ], i.e. in the plane perpendicular to the unique monoclinic axis b1

m. It means

that the ferromagnetic ordering is described in monoclinic symmetry with the magnetic mode

F0F instead of a 00F mode in hexagonal symmetry as explained in [23]. The gradual spin

reorientation by any angle is possible in agreement with magnetization [17] and neutron

diffraction results, e.g. [18, 19].

In the neutron diffraction study with instrument D2B we tried to determine the direction
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TABLE III. Lattice constants and angles refined from the SR powder diffraction pattern of the

MIX-Co sample using only ’insensitive’ peaks (see text) using Rietveld method with use of the

hexagonal (col. 1) and monoclinic (cols. 2-5) models. In the hexagonal model Co atoms are at

positions (2c) of P63/mmc while in monoclinic model in positions (4i) of C2/m (for details see

Sect. III H). The refinement quality indicators wRp are given in the bottom row of the table. The

results of refinements for the best monoclinic model with both δα ̸= 0 and δγ ̸= 0 (see text) are

shown in both pseudohexagonal (col. 4) and monoclinic (col. 5) settings.

No. 1 2 3 4 5

Model
Hex

P63/mmc

Ps-hex

α−fix

γ−free

Ps-hex

α−free

γ−fix

Ps-hex

α−free

γ−free

Mono

C2/m

a [Å] 2.50806(5) 2.50898(7) 2.50812(6) 2.50889(8) 4.34671(17)

b [Å] = a = a = a = a 2.50682(18)

c [Å] 4.07451(15) 4.07453(14) 4.07446(15) 4.07467(15) 4.07467(15)

α [◦] 90 90 90.0939(33) 90.0804(36) 90

β [◦] 90 90 89.9061(33) 89.9196(29) 90.0928(37)

γ [◦] 120 120.0732(33) 120 120.0544(43) 90

ac [Å] 3.54565(12) 3.54577(11) 3.54548(11) 3.54567(11) 3.54567(11)

wRp[%] 15.83 15.35 15.09 14.95 14.95

of the Co magnetic moments at RT. We performed Rietveld refinement using only the peaks

’insensitive’ to the stacking faults, similarly as with SR diffraction data described earlier.

The neutron diffraction pattern contains only four ’insensitive’ peaks – (002), (110), (112)

and (004) thus limiting the information we can extract with this approach.

In order to refine the direction of the magnetic moments we used the P1 magnetic space

group instead of the space group P63/mmc. The lattice constants were constrained a = b

and the angles α = β = 90◦, γ = 120◦ were fixed. The atoms were placed at (1
3
, 2
3
, 1
4
) and

(2
3
, 1
3
, 3
4
) positions with an initial magnetic moment along the c-axis. The unit cell has the

same metric as the hexagonal one, but the magnetic space group allows any direction of

the magnetic moment. After obtaining a stable solution we started to gradually change the
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FIG. 9. Neutron powder diffraction pattern of HCP-Co sample measured with instrument D2B at

RT. The refinement was done with the four peaks ’insensitive’ to stacking faults (see text). The

grey sections were excluded from refinements. The difference curve is shown at the bottom.

polar angle ϕm between the magnetic moment and the hexagonal c-axis and we refine the

magnetic moment length and the Debye Waller factor keeping the angle ϕm fixed for each of

the refinements. The resulting refinement with ϕm=10◦ is shown in Fig. 9. The unfavourable

values of the scattering lengths b(coh) and b(inc) seriously limit the possibilities of neutron

diffraction studies of cobalt.

The results of refined magnetic moment vs ϕm and the refinement quality indicator wRp

are shown in Fig. 10. With the neutron powder diffraction data one can determine the

magnetic moment direction with an accuracy of about ±10◦. Our fit gives a value of the

Co magnetic moment 0.86(5)µB. Earlier studies by Bertaut et al. [19] reported a value of

⟨S2⟩ = 0.703 µ2
B at 236 ◦C. For RT one can expect a magnetic moment larger by a few

percent than
√

0.703µB = 0.84µB which is close to our refined value. The wRp parameter is

changing slightly with the direction of the magnetic moment. There is an anticorrelation: for

increasing ϕm the value of Uiso decreases while Mtot increases. In fact we use four magnetic

and stacking-faults-insensible peaks only, see Fig. 9 so this is not enough to obtain a reliable

value of both Mtot and the Debye-Waller factor Uiso. SR powder diffraction peaks give

Uiso values about 0.01Å2 but these are obtained with a fit using about 10 peaks and we

cannot compare them with Uiso obtained from neutron diffraction in Fig. 10. Fits with the
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FIG. 10. The values of refined magnetic moment in directions parallel (a) and perpendicular (b) to

hexagonal c axis versus the angle ϕm between spin direction and the c axis. Panels (c),(d) and (e)

show the total magnetic moment, the isotropic displacement factor Uiso and the refinement quality

indicator wRp.

monoclinic symmetry were not successful because of the limited number of insensitive peaks

in the neutron diffraction pattern.

In the neutron diffraction study with instrument SPODI we tried to study the spin-

reorientation process in hcp-Co. The measurements with HCP-Co sample at SPODI started

with an unexpected effect. After the first measurements at RT the temperature was increased

to 380◦C in order to go surely above the spin reorientation transition. Unfortunately at

this high temperature the metastable hcp phase started to decompose and about 15% of

the sample volume changed irreversibly from hcp to fcc. This transition took place in a

relatively short time of a few minutes. Next, the temperature was reduced to 330◦C and

the measurements were run in the cycle by cooling in steps from 330◦C down to 100◦C and
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next by warming in steps up to 330◦C. At the end the sample was cooled down and the

measurement at RT was repeated. The amount of fcc-to-hcp content did not change during

the cycling between 330◦C and 100◦C.

The statistical accuracy accessible in the temperature dependent measurements at SPODI

was not enough to determine the magnetic moments direction with a precision better than

±10◦. In order to visualize the main effects we show the measured temperature dependence

of the (002) and (100) Bragg peaks in Figs. 11a and 11b, respectively. These Bragg peaks

contain both nuclear and magnetic contributions. The (002) peak is ’insensitive’, while the

(100) has contributions due to the stacking faults, see e.g. Fig. 2. The present results are

compared with results from Bertaut et al. [18] for (002) in Figs. 11a and 11c respectively,

while for (100) in Figs. 11b and 11d, respectively. Both experiments show a gradual change

of the intensity ratios which can be interpreted as a sign of a spin reorientation in the Co

single crystal [18] across about ∆T = 80◦C while in powder HCP-Co the spin-reorientation

starts at about 100◦C, and finishes around 300◦C, see Fig. 11.

From our neutron powder diffraction data we can confirm that there is a spin-reorientation

process in our powder HCP-Co sample, but the process takes place in a wider temperature

range than in the single crystal as reported by Bertaut et al. [18, 19]. It is however not

possible to confirm if the magnetic moments are exactly parallel to the hexagonal [001] at

100◦C nor exactly perpendicular to [001] above 300◦C. It was also not possible to confirm

or refute the hypothesis of the monoclinic symmetry of the averaged crystal structure of

hcp-Co ordered areas using the neutron powder diffraction data from D2B and SPODI.

K. Model of the atomic layers in monoclinic (pseudo-hexagonal) hcp-Co phase

model

Let us look at the nearest neighbour interatomic distances in the monoclinic lattice of the

hcp-Co phase model. A schematic plot of the monoclnic (formerly: hexagonal, now pseudo-

hexagonal) A and B layers is given in Fig. 12. The atoms in the A layer: A0, ...A6 are located

in the drawing plane, i.e. at z = 1/4: A0 at (0, 0, 1
4
), A1 at (1, 1, 1

4
), A2 at (0, 1, 1

4
) and so

on. The atoms in the B layer (left panel) are located at z = −1/4, i.e. below the A layer:

at B1(
1
3
,−1

3
,−1

4
), B2(

1
3
, 2
3
,−1

4
), B3(−2

3
,−1

3
,−1

4
). The atoms in the C layer (right panel)

are located at z = 3/4, i.e. above the A layer at: C1(−1
3
, 1
3
, 3
4
), C2(−1

3
,−2

3
, 3
4
), C3(

2
3
, 1
3
, 3
4
).

25



FIG. 11. Temperature dependence of the Bragg peaks measured with neutron diffraction for powder

HCP-Co sample in the present study using instrument SPODI: peak (002) (a) and peak (100) (b).

Similar results obtained from neutron diffraction on a Co single crystal by Bertaut et al. [18, 19]

are shown: peak (002) (c) and (100) (d).

Ci is the image of Bi by inversion centered at A0. The hexagonal and pseudo-hexagonal

coordinate systems defined by vectors (a0
h,b

0
h, c

0
h) and (a1

h,b
1
h, c

1
h), see eqs. (9-10) have the

same common origin, see also Fig. 7. The unique monoclinic axis b1
m = [010]m is parallel to

both:

b1
m ∥ (a0

h + b0
h) ∥ (a1

h + b1
h) (14)

as shown in Fig. 12 with the dashed line. The unique monoclinic plane (010)m is drawn

with the dash-dotted line. We assume that the fractional atomic coordinates of all atoms in

A,B and C layers remain constant. We consider the difference in atomic positions between

the hexagonal and pseudo-hexagonal structure models due to a change of the crystallographic

axes as given by eqs.(9-10). In Fig. 12 it is assumed that the lengths of the hexagonal and

pseudo-hexagonal lattice parameters are the same, i.e. a0h = b0h = a1h = b1h and c0h = c1h

but the pseudo-hexagonal angles change from 90◦ and 120◦. The pseudo-hexagonal c1
h axis

rotates within the unique monoclinic plane towards atom B1 in Fig. 12, see also eqs.(9-10)

with Fig 7. In the refined structural model for hcp-Co the pseudo-hexagonal angles α, β and

γ change by about 0.11◦ and it is hardly visible on a drawing. For visualisation purposes,
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FIG. 12. Schematic presentation of the arrangement of atoms seen from top of the A and B layers

(left panel) and A and C layers (right panel). The Co atoms represented by open circles (A-solid

lines, B-dotted lines and C-dashed lines) are shown at their positions in the hexagonal lattice.

The vectors indicate how these atoms move on changing to the pseudo-hexagonal, i.e. monoclinic

crystal structure model. The symbol + or 0 or − next to the vector shows if the vector points

below or above (see text). The unique monoclinic axis b1
m (dash-dotted line) and the monoclinic

plane (010)m (dotted line) are shown.

Fig. 12 is drawn with δα, δβ and δγ about 10◦. The shifts of the atomic positions are shown

with arrows. Please note that the shifts have also a small vertical component whose sign is

given as + or − in Fig. 12.

The distance from A0 to neighbour atoms within the monoclinic plane: d(A0B1) =

d(A0C1) are different from the distances to the atoms outside this plane: d(A0B2) =

d(A0B3) = d(A0C2) = d(A0C3). In the usual way of explaining the partial dislocation

in the hcp-fcc boundary region, see e.g. [14, 15] each atom from the A layer has three

equivalent neighbours in the B layer and three equivalent neighbours in the C layer. If the

pseudo-hexagonal system proposed here describes the hcp-Co and fcc-Co domains then there

may be a preference for the partial dislocation to be directed either along the monoclinic

axis or within the monoclinic plane. If the proposed monoclinic model works, then we can

expect that the maximal inclination of the layers with respect to the hexagonal [001] axis

occurs within the monoclinic plane, i.e. along the line C1 − A0 −B1.

If this model works well, then one can suppose that the maximally inclined layers, may

preferentially be directed along the unique monoclinic plane direction (dotted line). This

hypothesis could explain why multiple dislocations often choose one preferred direction in
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the cobalt grain as it was often reported, e.g. [11, 12].

IV. SUMMARY

The present study confirms that the more realistic crystal structure model

provides a better description of the observed diffraction data as compared with

the simplified model.

The initial hypothesis that the averaged crystal structure of the hcp-Co areas is not

hexagonal but monoclinic has been confirmed by SR powder diffraction and neutron diffrac-

tion. This is in agreement with the observed temperature driven reorientation [18, 19] of the

ferromagnetic moments of cobalt. During such a reorientation the magnetic moments should

be confined to a plane which is perpendicular to the unique monoclinic axis, see e.g. [44].

The argument about monoclinic symmetry of crystals with a continuous spin reorientation

[44] is valid for single-phase systems. The cobalt crystallites do not fulfill these assumtpions

because they are not single-phase.

Besides the symmetry of the crystal structure, there are interesting observations related to

the microstrains. Both MIX-Co sample (fcc:hcp = 18%:82%) and HCP-Co sample (fcc:hcp

= 2.5%:97.5%) show broad stacking-faults-sensitive hcp-Co peaks with very similar shapes

for both samples, see Fig. 3. The remianing peaks which are (nominally) insensitive to

stacking faults show considerably different widths for both samples, see Fig. 4. It means

that the two samples have a different distribution of microstrains. Surprisingly, the MIX-Co

sample shows both hcp-Co and fcc-Co with low microstrains ϵ ≈ 0.13%, while the HCP-Co

sample shows large microstrains for the fcc-Co: ϵ ≈ 0.73% and hcp-Co : ϵhh0 ≈ 0.30% (along

[110]) and ϵ00l ≈ 0.17% (along [001]). It means that the presence of a smaller amount of the

fcc-Co areas induces larger microstrains in the hcp-Co areas. Besides the different fcc

contents and different microstrains both MIX-Co and HCP-Co samples show

similar monoclinic lattice parameters and similar type of stacking faults. These

observations show the need for a revisit of the quantitative models of stacking faults in

cobalt.
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